Constrained data-driven optimal iterative learning control
نویسندگان
چکیده
منابع مشابه
Optimal behaviour prediction using a primitive-based data-driven model-free iterative learning control approach
This paper suggests an optimal behaviour prediction mechanism for Multi Input-Multi Output control systems in a hierarchical control system structure, using previously learned solutions to simple tasks called primitives. The optimality of the behaviour is formulated as a reference trajectory tracking problem. The primitives are stored in a library of pairs of reference input/controlled output s...
متن کاملNon-Iterative Data-Driven Model Reference Control
In model reference control, the objective is to design a controller such that the closed-loop system resembles a reference model. In the standard model-based solution, a plant model replaces the unknown plant in the design phase. The norm of the error between the controlled plant model and the reference model is minimized. The order of the resulting controller depends on the order of the plant ...
متن کاملEstimation-based norm-optimal iterative learning control
The norm-optimal iterative learning control (ilc) algorithm for linear systems is extended to an estimation-based normoptimal ilc algorithm where the controlled variables are not directly available as measurements. A separation lemma is presented, stating that if a stationary Kalman filter is used for linear time-invariant systems then the ilc design is independent of the dynamics in the Kalman...
متن کاملDirect data-driven control of constrained systems
In model-based control design one often has to describe the plant by a linear model. Deriving such a model poses issues of parameterization, estimation, and validation of the model before designing the controller. In this paper, a direct data-driven control method is proposed for designing controllers that can handle constraints without deriving a model of the plant and directly from data. A hi...
متن کاملLearning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework
A Learning Model Predictive Controller (LMPC) for iterative tasks is presented. The controller is referencefree and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nondecreasing performance at each iteration. The paper presents the control design approach, and shows how to r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Process Control
سال: 2017
ISSN: 0959-1524
DOI: 10.1016/j.jprocont.2017.03.003